

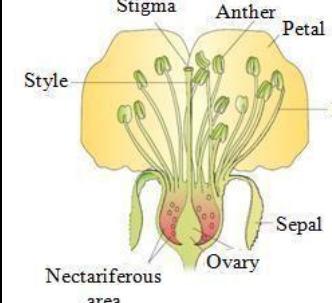
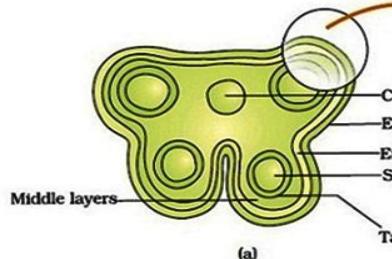
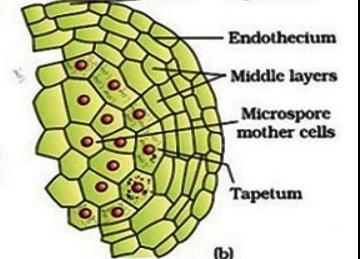
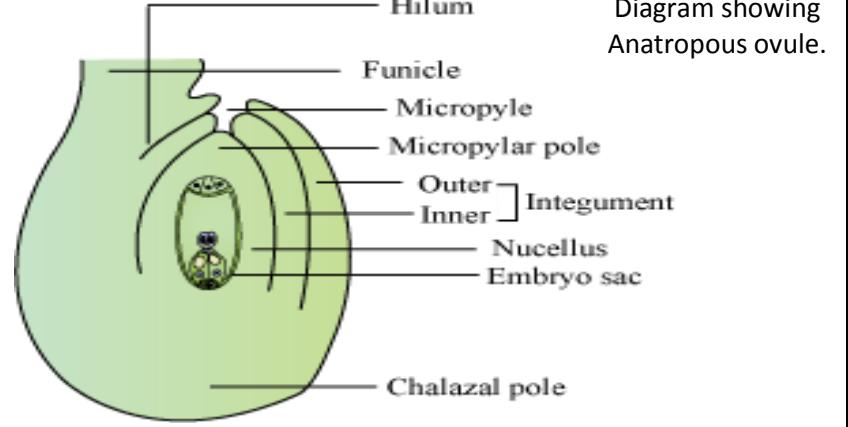
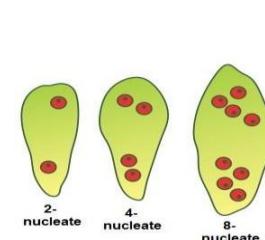
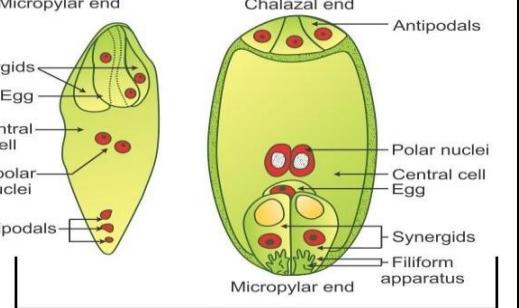
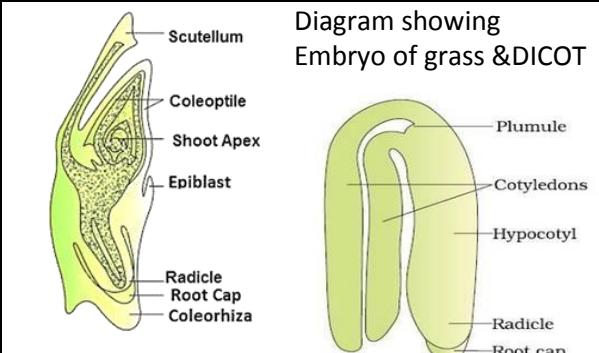
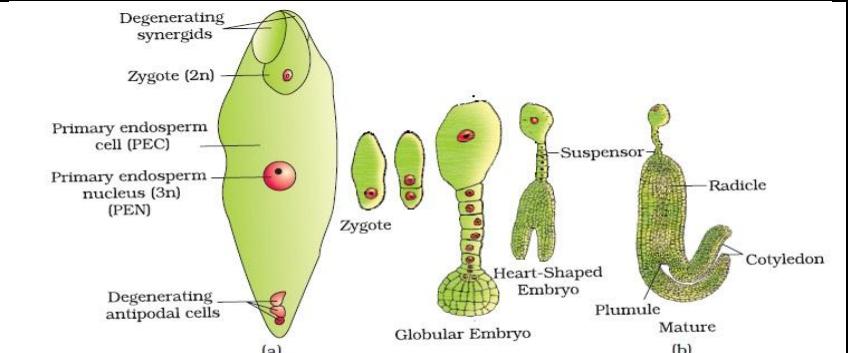
JAIPUR REGION
CLASS: XII
BIOLOGY
SESSION: 2020-21

LAST MINUTE REVISION STUDY MATERIAL

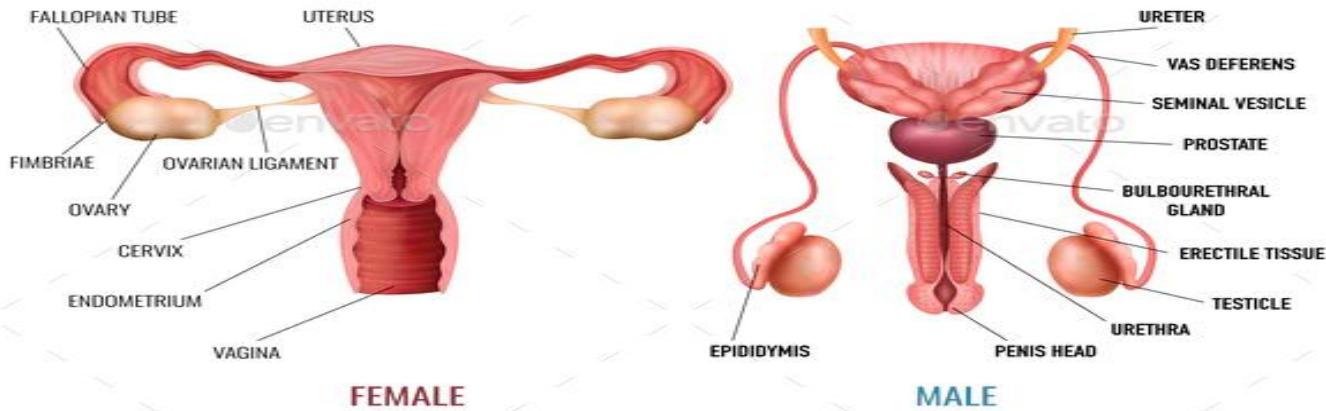
ADVISORS

- **SHRI B.L. MORODIA, DEPUTY COMMISSIONER, KVS (RO), JAIPUR**

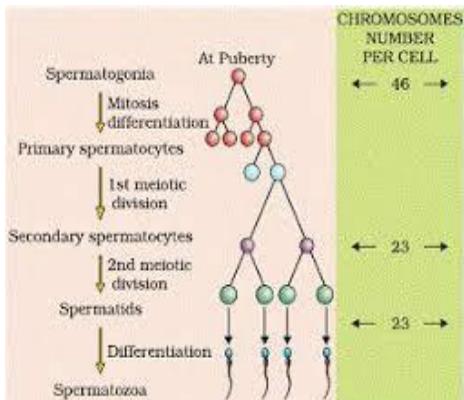
COORDINATION TEAM AT KVS (RO), JAIPUR









- **SHRI D.R. MEENA, ASSISTANT COMMISSIONER, KVS (RO), JAIPUR**
- **SHRI MUKESH KUMAR, ASSISTANT COMMISSIONER, KVS (RO), JAIPUR**

CONTENT TEAM


- **SHRI MANOJ KUMAR, PRINCIPAL, KV JALIPA CANTT BARMER**
- **SHRI MALLIKARJUN WALIKAR, PGT BIO, KV BANSWARA**
- **SHRI PUKHRAJ VAISHNAV, PGT BIO, KV BEAWAR**
- **MS SHIVANI PANDEY, PGT BIO, KV NO. 1, JAIPUR**
- **SHRI BHAGAT KUMAR MEGHWAL, PGT BIO, KV BSF JODHPUR**
- **SHRI PREM DEEPAK MISHRA, PGT BIO KV CTPP, CHABRA**

UNIT – 6 Reproduction


CHAPTER - 2 REPRODUCTION IN FLOWERING PLANT

<p>Stigma Anther Petal Style Filament Sepal Ovary Nectariferous area</p> <p>Bisexual flower- stamen and pistil</p>	<p>Connective Epidermis Endothecium Sporogenous tissue Middle layers Tapetum</p> <p>(a)</p> <p>Epidermis Endothecium Middle layers Microspore mother cells Tapetum</p> <p>(b)</p> <p>Anther Walls -Epidermis, endothecium, middle layer and tapetum</p>
<p>(a)</p> <p>Antner contains four microsporangia where microspores are produced from microspore mother cell by meiosis called microsporogenesis.</p> <p>PMC-> meiosis >> 4Microspore(tetrad)</p>	<p>Hilum Funicle Micropyle Micropylar pole Outer Integument Inner Integument Nucellus Embryo sac Chalazal pole</p> <p>Diagram showing Anatropous ovule.</p>
<p>Megasporogenesis-The process of formation of megasporangia from the megasporangium cell is called Megasporogenesis. In the centre of the ovule there is a mass of tissue called nucellus. Cells of nucellus have abundant reserve food materials. One cell of the nucellus towards micropylar end differentiated into megasporangium cell (MMC). It is a large diploid cell, dense cytoplasm with prominent nucleus. The MMC undergoes meiotic division resulting four haploid megasporangia.</p>	<p>Micropylar end Synergids Egg Central cell 2 polar nuclei Antipodal cells Chalazal end Antipodal cells Polar nuclei Central cell Egg Synergids Filiform apparatus Mature Embryo Sac</p> <p>The large central cell has two polar nuclei. A typical angiosperm embryo sac at maturity is 8-nucleated and 7-celled</p> <p>KEYWORDS-ENDOSPERM, PEC, PEN.</p>
<ul style="list-style-type: none"> Pollination: Transfer of pollen grains from the anther to the stigma of a pistil is termed as pollination. Both male and female gametes are non-motile. Kinds of pollination: Autogamy, Geitonogamy and xenogamy. 	<p>Antipodal cells Polar nuclei Egg cell Synergids Release of sperm cells Endosperm (3n) Zygote (2n)</p> <p>Double Fertilization</p>
<p>Scutellum Coleoptile Shoot Apex Epiblast Radicle Root Cap Coleorrhiza</p> <p>Plumule Cotyledons Hypocotyl Radicle Root cap</p> <p>Diagram showing Embryo of grass & DICOT</p>	<p>Degenerating synergids Zygote (2n) Primary endosperm cell (PEC) Primary endosperm nucleus (3n) (PEN) Degenerating antipodal cells Globular Embryo Heart-Shaped Embryo Suspensor Radicle Cotyledon Plumule Mature (b)</p> <p>(a)</p> <p>(b)</p> <p>Figure 2.13 (a) Fertilised embryo sac showing zygote and Primary Endosperm Nucleus (PEN); (b) Stages in embryo development in a dicot [shown in reduced size as compared to (a)]</p>

HUMAN REPRODUCTIVE SYSTEM

SPERMATOGENESIS

Result = 4 haploid sperms (Spermatozoa). This process of spermatogenesis starts from puberty in males.

(Refer fig 3.6 for sperm, a matured sperm have Head, Neck, Middle piece and tail each showing a peculiar function – Pg. 48)

Oogenesis

1. Starts at embryonic stage in fetal ovary but meiosis -1 gets arrested at Prophase -1.
2. During puberty when follicle matures the first meiotic division completes and secondary oocyte forms.
3. During ovulation secondary oocyte releases.
4. During fertilization the secondary oocyte converts in to ovum (Adult reproductive stage)

Result = one Egg and 3 polar bodies generate which soon degenerate.

Hormonal control in Male reproductive system

Hypothalamus GnRH Pituitary gland it releases two hormones

LH

Acts on Leydig cells

Produces androgens

Starts spermatogenesis

Menstrual cycle – The cycle is completes in 28 days.

Start is Menarche and end is Menopause. The cycle is divided in 3 phases (a) Pre ovulatory (1 to 5 days) (b) ovulatory (6 to 14 and on 14 ovulation occur) (c) Post ovulatory (14 to 28 days). Progesterone known as pregnancy hormone. If fertilization does not takes place then corpus luteum starts degenerating and visible indication bleeding starts.

(Refer fig. 3.9 at page no. 50 for details)

Fertilization and implantation

(Fertilization takes place in fallopian tube while implantation occurs in uterus.)

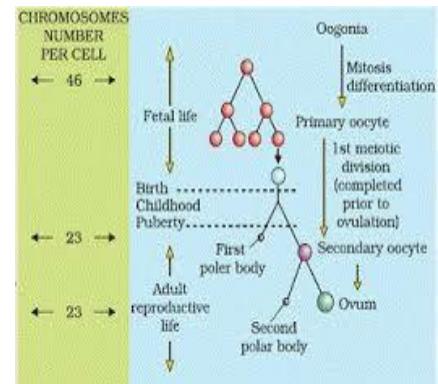
Only one sperm can enter in egg

As entry of sperm inside ovum changes membrane configuration.

Pregnancy and Embryonic development

After implantation placenta forms. and inner cell mass forms different organs in humans by the formation of germinal layer. The division at the time of embryo formation is cleavage, than morula, and blastocyst at this stage it moves in uterus and become embedded.

In 9 month's organogenesis completes. The first organ is human heart.


Parturition and Lactation-

Starts by foetal ejection reflex it releases oxytocin hormone, it increases contractions and helps in child birth and also lactation.

The first milk is known as colostrum it provide passive immunity to new born.

Some key words.

Stem cells , Chorionic villi, Placenta , Foetal ejection reflex.

CHAPTER – 4: REPRODUCTIVE HEALTH

WHO- WORLD HEALTH ORGANISATION have defined it as a total well-being in all

Aspects of reproduction i.e., physical, emotional, behavioural & social.

Goal of Reproductive Health

FAMILY PLANNING'
Reproductive & Child Health Care Programmes' (RCH)

Creating awareness, Educating people & aware about sex abuse & sex related crimes

Problems in Reproductive Health-Sex
myths & misconception ,lack of awareness & STDs

MTP-voluntary termination of pregnancy before full term is called medical termination of pregnancy (MTP) or induced abortion. It is allowed up to 24 weeks. It is legalized in case of rape., in case of casual unprotected intercourse, in case pregnancy is harmful for foetus or for mother.

Ideal contraceptive -User friendly, easily available, least side – effects

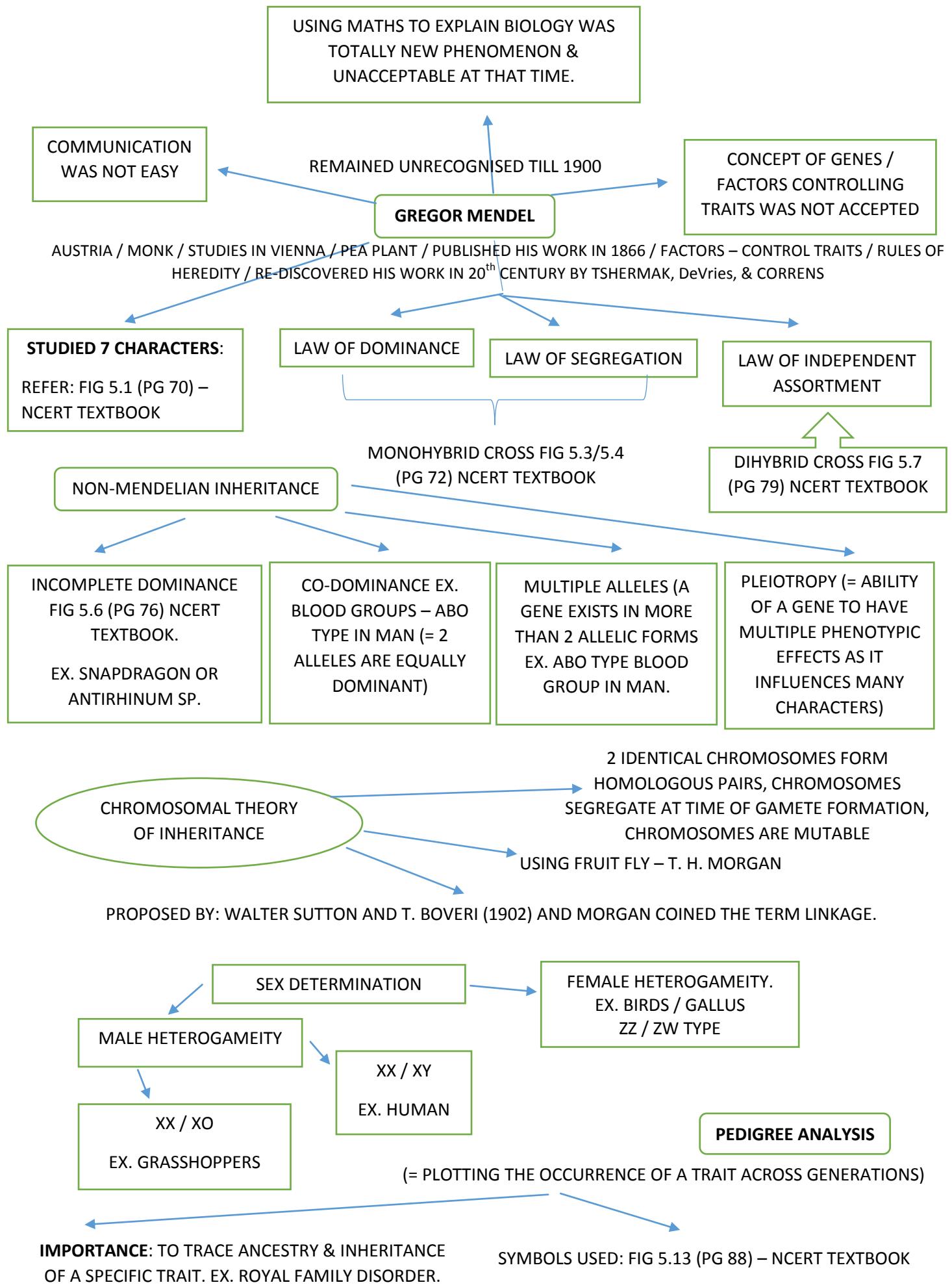
Method of Birth Control

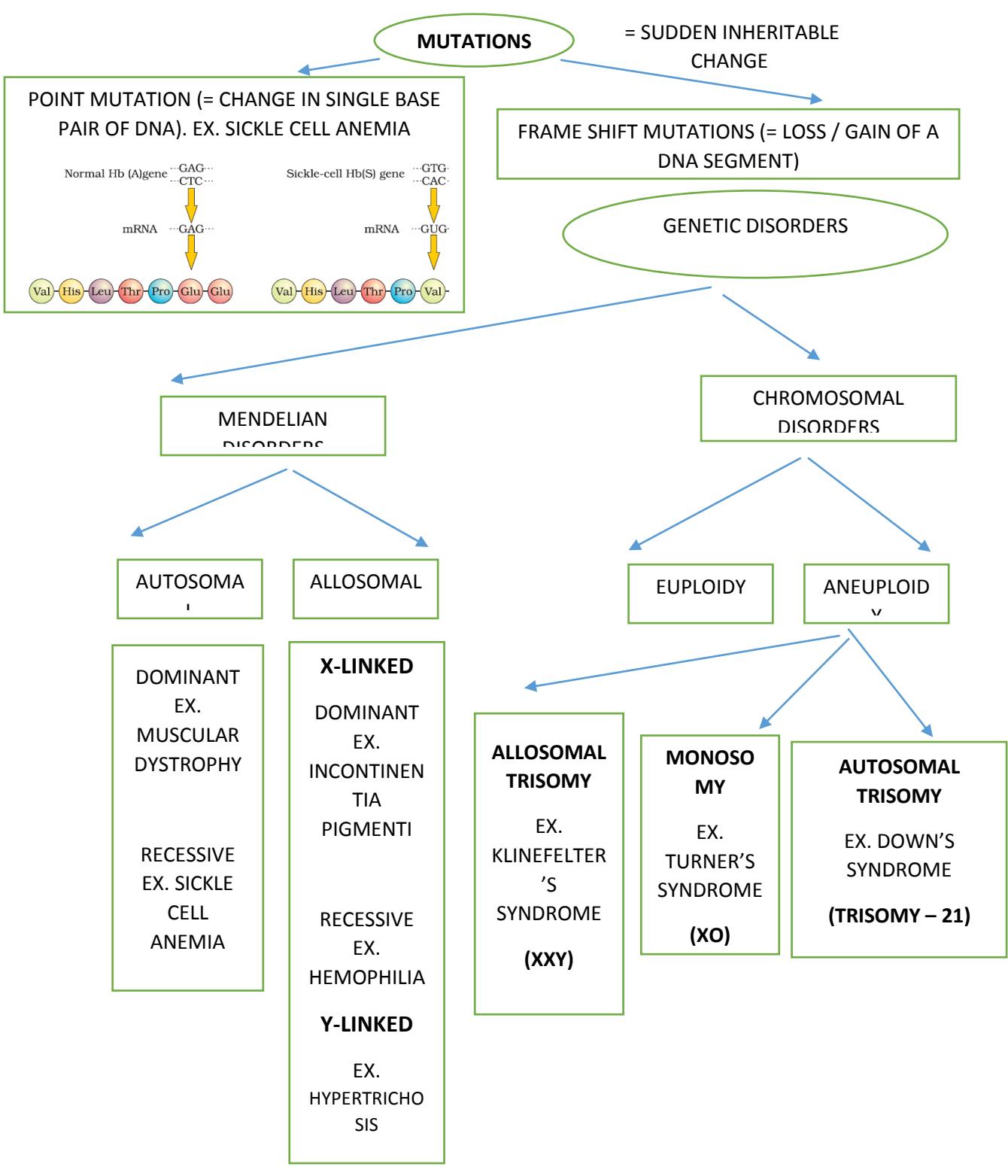
- (i) Natural Methods : Periodic abstinence ,Coitus interruptus Lactational amenorrhea.
- (ii) Barrier methods : Condom, Diaphragms, Cervical cap.
- (iii) Intra uterine devices : Non . medicated e.g. Lippes loop Copper releasing e.g., Cu-T, multiload 375 Hormone releasing e.g. LNG.20, progestasert
- (iv) Oral contraceptives : Pills / Saheli Small doses of either progestogens or Progestogen . estrogen combination
- (v) Surgical (Sterilisation) : (1)Tubectomy; (2) Vasectomy

Amniocentesis-It is a fetal sex determination test based on the chromosomal pattern in the amniotic fluid surrounding the developing embryo.

- How is it misused? - They are misused for sex determination of unborn child and increase female foeticides.

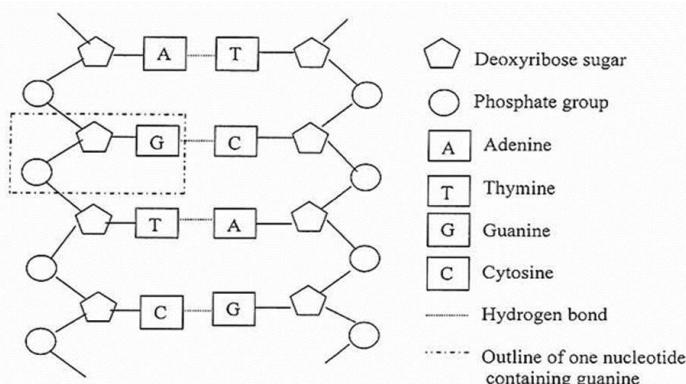
Sexually transmitted diseases (STD) or venereal diseases (VD) or reproductive tract infections (RTI). The various types of sexually transmitted diseases include gonorrhoea, syphilis, genital herpes, candida and of course the most common HIV leading to AIDS **Prevention**-avoid sex with unknown partners or multiple partners, always use condoms during coitus, in case of doubt, go to a qualified doctor for early detection and get complete treatment if diagnosed with disease.

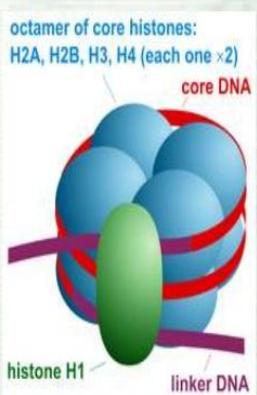

Infertility-A large no of couples all over India are infertile due to physical, congenital, diseases, drugs, Immunological or even psychological.


ART (Assisted reproductive technique)

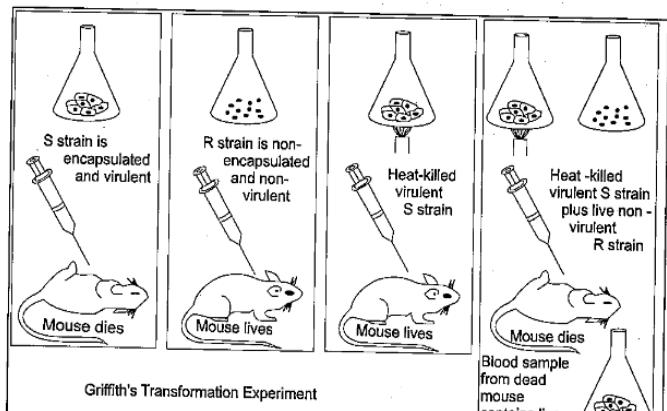
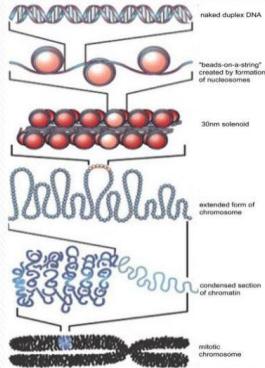
In vitro fertilization-(IVF-fertilisation-outside the body in almost similar conditions as that in the body)
Embryo Transfer – Test tube Baby
1. (**ZIFT**-zygote intra fallopian transfer) The zygote or early embryos (with up to 8 blastomeres) could then be transferred into the fallopian tube
2. (**IUT** – intra uterine transfer), embryos with more than 8 blastomeres, into the uterus

In-vivo fertilisation (fusion of gametes within the female)
1. (**GIFT** – gamete intra fallopian transfer) Transfer of an ovum collected from a donor into the fallopian tube of another female who cannot produce one, but can provide suitable environment for fertilization
2. Intra cytoplasmic sperm injection (**ICSI**) to form an embryo in the laboratory in which a sperm is directly injected into the ovum.
3. Artificial insemination (**AI**) (**IUI** – intra- uterine insemination) In this technique, the semen collected either from the husband or a healthy donor is artificially introduced either into the vagina or into the uterus

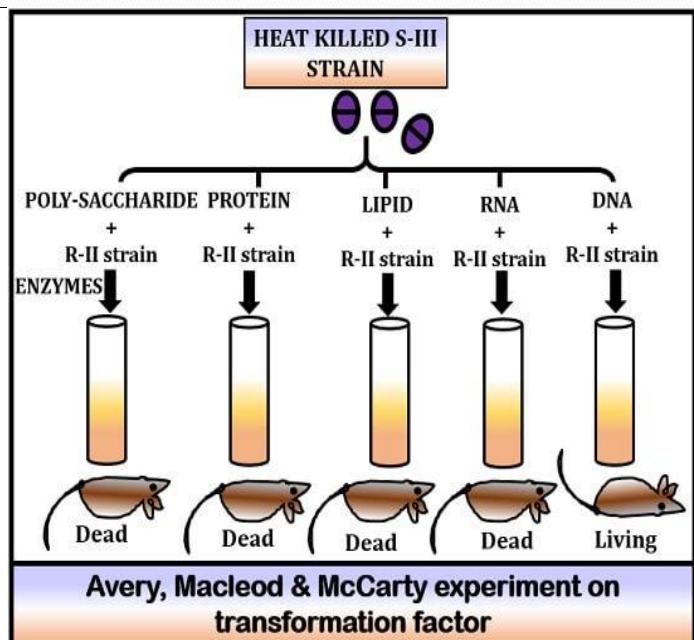

UNIT – 7 : GENETICS AND EVOLUTION
CHP 5 - PRINCIPLES OF INHERITANCE AND VARIATION


CH. 6 Molecular Basis of Inheritance

Simple diagram of DNA - labeled

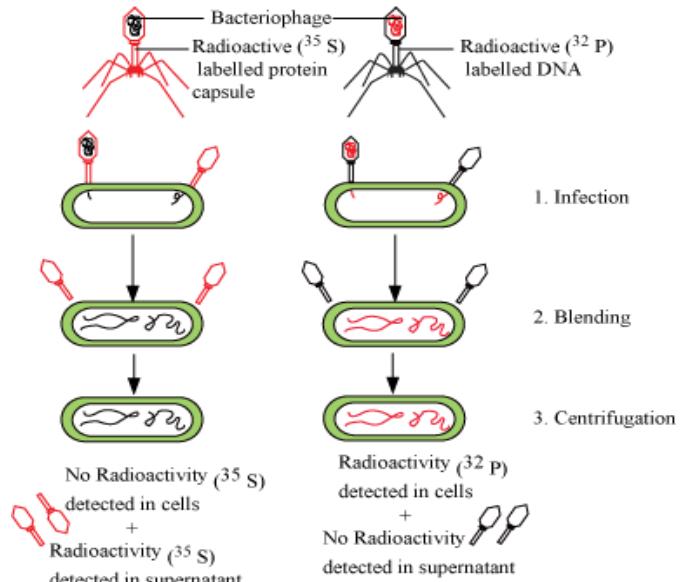


NUCLEOSOMES

- Nucleosomes are the fundamental repeating subunits of the eukaryotic chromatin
- They are made of DNA and a four pairs of proteins called histones, and resemble "beads on a string" when observed with an electron microscope
- Nucleosomes contain nearly 200 bp of DNA
- Histones form the interior core and DNA lies on the surface of the particle



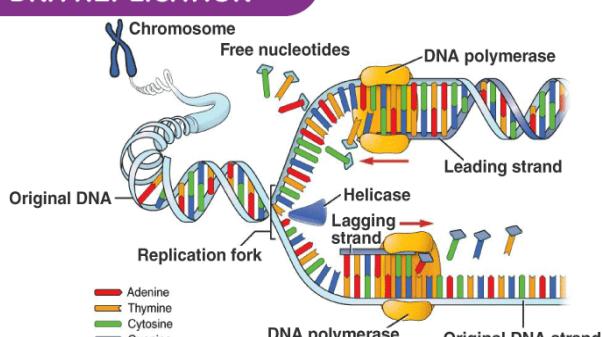
Chromatin Structure

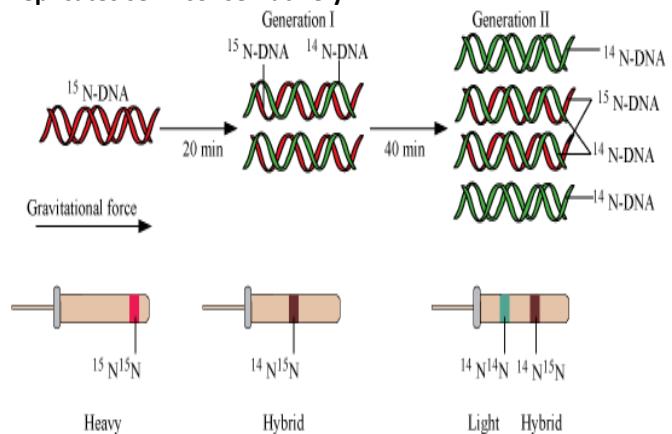
- Higher Levels of DNA packing:
- There are several orders of chromatin coiling, each in order of increasing compactness.
- DNA coils around histones to form a nucleosome. Look like "beads on a string" formation.
- The beaded string coils/folds to form chromatin fiber (30 nm).
- The chromatin fiber forms loops called **looped domains**. They are in the extended form of the chromosome.
- The looped domains condense tightly into small portions of the mitotic chromosome.



Griffith's Transformation Experiment

Avery, MacLeod & McCarty experiment on transformation factor


Hershey Chase Experiment: To prove that DNA is the genetic material


DNA Replication

Steps: Initiation, Elongation, termination

DNA REPLICATION

Messelson Stahl's Experiment : To demonstrate that DNA replicates semi conservatively

Transcription Unit

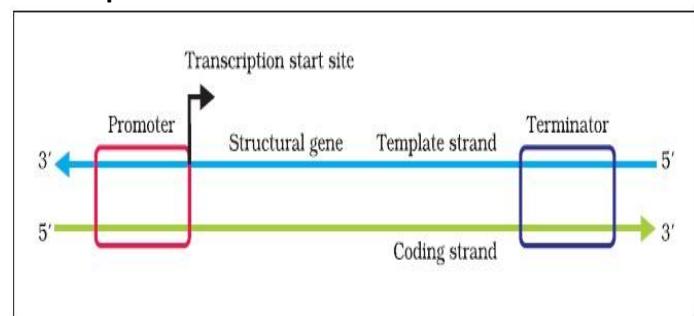
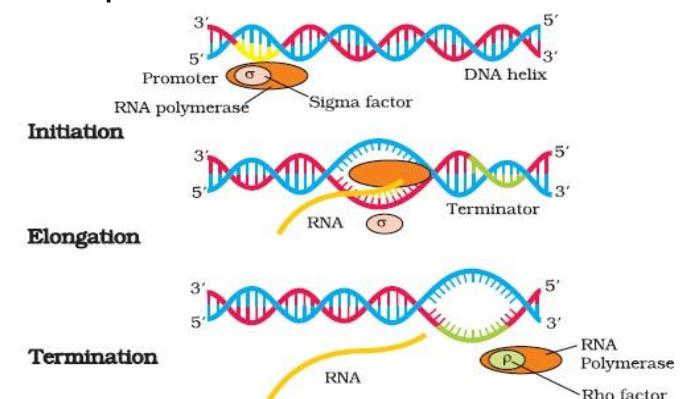



Figure 6.9 Schematic structure of a transcription unit

Transcription in Bacteria

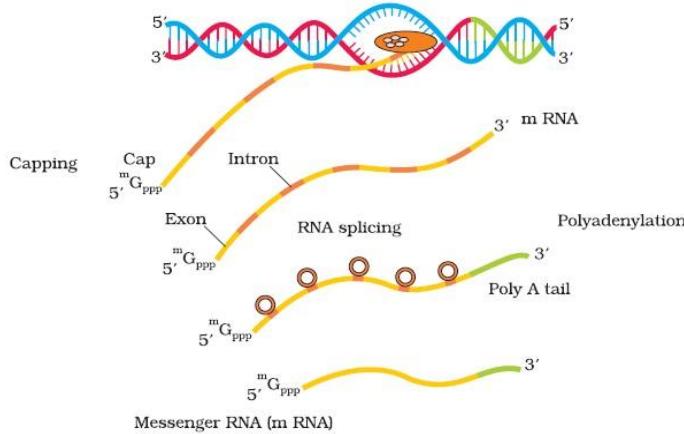
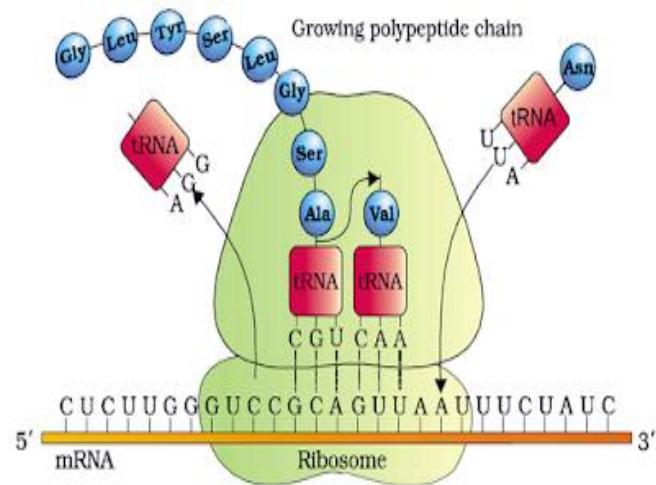
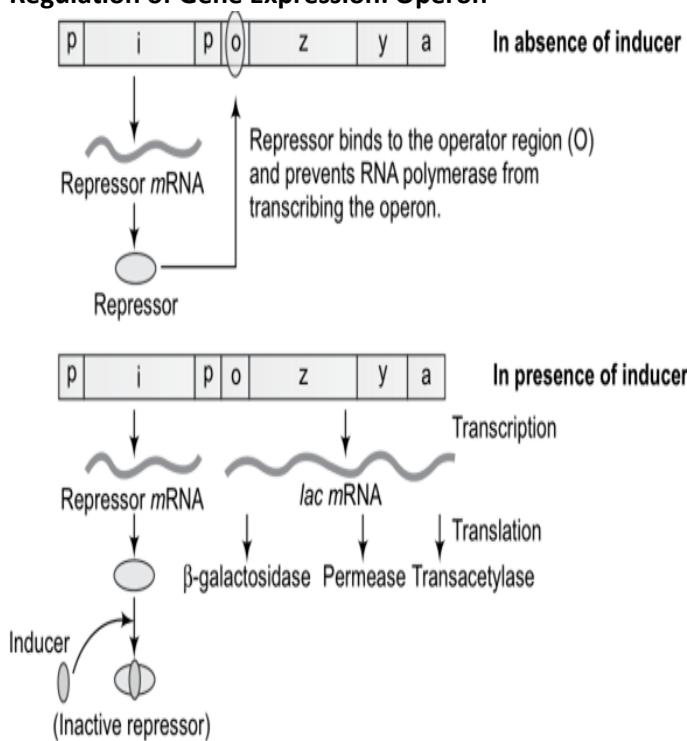


Figure 6.11 Process of Transcription in Eukaryotes

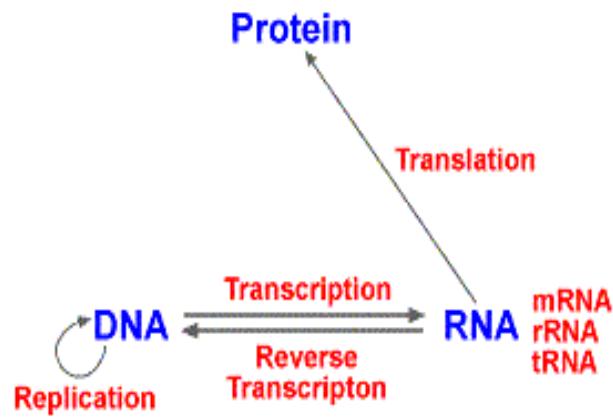
The Genetic Code


- The codon is triplet
- 61 codons code for amino acids, 3 are stop codons (UAA, UAG, UGA)
- AUG has dual function, it codes for methionine and is initiator codon also.
- Code is unambiguous, one codon codes for one amino acid.
- Code is degenerate, some amino acids are coded by more than one codon.
- The code is read without punctuations.
- The code is nearly universal.

Human Genome Project


- Human genome is said to have 3×10^9 bp.
- Methodologies- (1) identifying all the genes that are expressed as RNA (Expressed sequence Tags)
- (2) Sequence annotations- sequencing the whole set of genome that contained all the coding and non- coding sequence and later assigning different regions in the sequence with functions.
- Commonly used vectors were- BAC(bacterial artificial chromosomes) and YAC (Yeast artificial chromosome)

Translation:


Formation of protein using information from mRNA

Regulation of Gene Expression: Operon

Central Dogma

DNA Fingerprinting

- It is a quick way to compare the DNA sequences of any two individuals.
- It involves identifying difference in some specific regions in DNA sequence called as **repetitive DNA**.
- **Satellite DNA** sequences normally do not code for any proteins, but show high degree of **polymorphism**, which arise due to mutations and form basis of DNA fingerprinting.

UNIT – 8 : BIOLOGY AND HUMAN WELFARE

CH 8 Human Health and Disease

Health , for a long time, was considered as a state of body and mind where there was a balance of certain 'humors'.	Improper functioning of one or more organs or systems of the body is adversely affected, gives rise to various signs and symptoms i.e we have disease .
--	--

FACTORS THAT AFFECT HEALTH **Balanced diet**

1. Personal hygiene
2. Regular exercise
3. Good habits

HOW TO ACHIEVE GOOD HEALTH ?

- Knowledge about diseases, their cause and effect
- Vaccination/immunisation
- Control of vectors
- Proper disposal of waste
- Consumption of clean food and water
- Maintenance of hygiene

DISEASES

which can easily transmit from one person to other by any means are called **infectious or communicable diseases**.

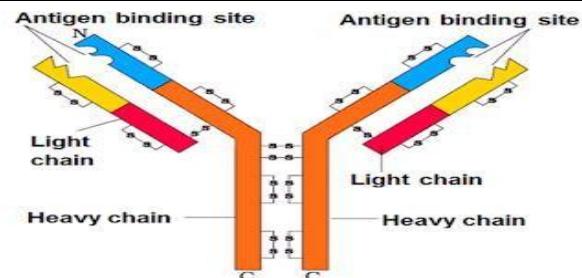
Virus - Common cold, polio, measles **Bacteria** - Typhoid, pneumonia, plague, diphtheria, tetanus

Protozoa – amoebiasis, Malaria **fig.8.1**

Fungi - ringworm

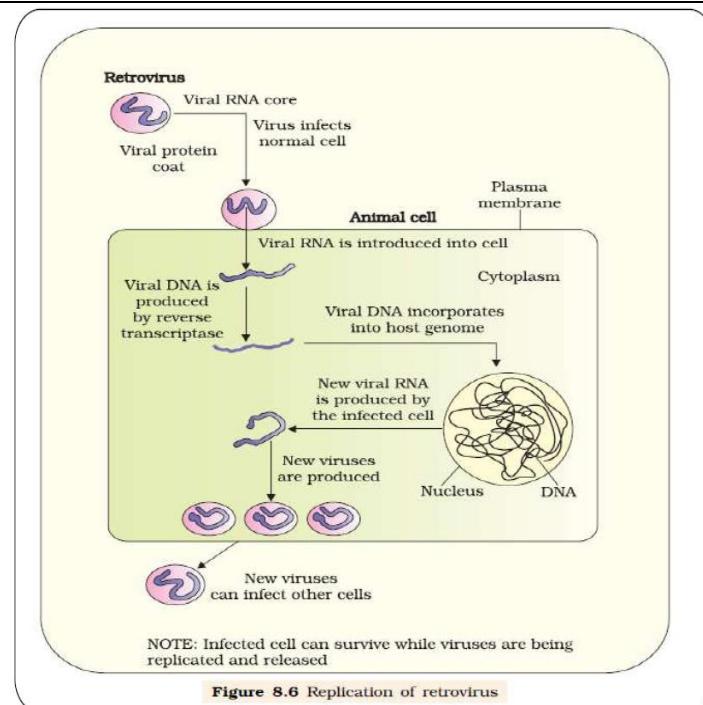
Helminthes - Ascariasis, filariasis, taeniasis

Diseases which can not be transmitted from one person to another are called non-infectious or **noncommunicable diseases**.


Each **antibody** has four polypeptide chains.

Two small chains called light chains.

Two longer chains called heavy chains.


Antibody represented as H2L2.

Different classes of antibody produced in our body are IgA, IgM, IgD, IgE and IgG.

KEYWORDS- PATHOGEN, VACCINATION, DRUG / ALCOHOLABUSE,

AMI vs. CMI: Immune response by the B-cells by production of antibody is called Antibody mediated immune response or humoral immune response. Immune response by T-cells is by activation of cytotoxic killer cells which detects and destroys the foreign cells and also cancerous cells called cell mediated immune response. Rejection of organs transplants are due to T-lymphocytes. Tissue matching, blood group matching are essential for organ transplantation. Even after tissue typing immune-suppressants are required before and after transplantation.

Figure 8.6 Replication of retrovirus

Figure-8.6 page no 155

Diagnosis: ELISA (enzyme linked Immuno-sorbent assay), PCR test for confirmation

Prevention of AIDS:

- AIDS has no cure, prevention is the best option.
- Safe blood for transfusion
- Use of disposable needles
- Free distribution of condoms.
- Prevention of drug abuse

Advocating safe sex and promoting regular checkup

CANCER-Uncontrolled cell division leads to production of mass of cell called cancer.

- Cancerous cell lost the property of contact inhibition.
- Cancerous cell just continue to divide giving rise to masses of cell called tumors.
- Benign tumors: Normally remain confined to their original location
- Do not spread to other location. Cause little damage.
- Malignant tumors: Cancerous cells escape from the site of origin and moves to distant place by blood, wherever they get lodged make the normal cell cancerous. This property is called metastasis.

IMMUNITY

The overall ability of the host to fight the disease causing organism by immune system is called **immunity**

There are two types of immunity: Innate Immunity. Acquired Immunity. Active and Passive

CHAPTER - 10

MICROBES IN HUMAN WELFARE

MICROBES IN HOUSEHOLD PRODUCTS

<i>Lactobacillus / LAB</i>	<i>Saccharomyces cerevisiae</i>	<i>Saccharomyces cerevisiae</i>	<i>Propionibacterium sharmanii</i>
CURD	BREAD	TODDY - Microbes ferment sap from plants	SWISS CHEESE

MICROBES IN INDUSTRIAL PRODUCTS

1 - FERMENTED BEVERAGES		2 - ANTIBIOTICS	3 - ENZYMES
WITH DISTILLATION	WITHOUT DISTILLATION		
WHISKY, BRANDY AND RUM	WINE AND BEER		LIPASES – digests lipids
<i>Saccharomyces cerevisiae</i>		<i>Penicillium notatum</i>	PECTINASES AND PROTEASES (to clarify bottle juices)
4 - BIOACTIVE MOLECULES			STREPTOKINASE
STATINS		CYCLOSPORINE - A	<i>Streptococcus</i> – used as clot buster
<i>Monascus purpureus</i> – blood cholesterol lowering agent		<i>Trichoderma polysporum</i> – immunosuppressive drug	
5 – ORGANIC ACIDS			
<i>Aspergillus niger</i>	<i>Acetobacter aceti</i>	<i>Clostridium butylicum</i>	<i>Lactobacillus</i>
A fungus		A bacterium	
Citric acid	Acetic acid	Butyric acid	Lactic acid

MICROBES IN PRODUCTION OF BIOGAS – BACTERIA INVOLVED IS METHANOBACTERIUM

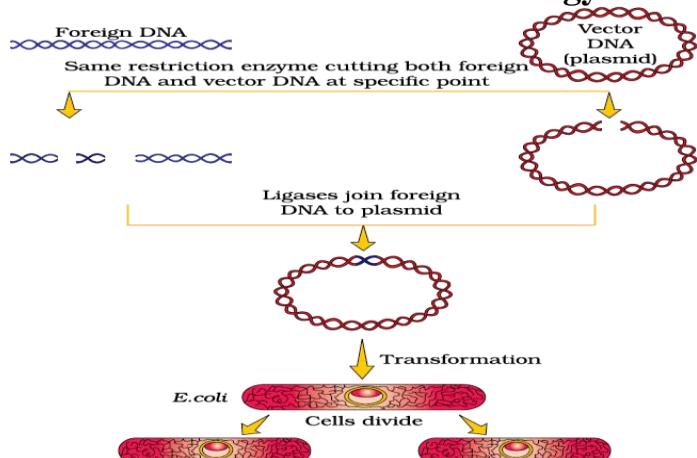
MICROBES IN SEWAGE TREATMENT

PRIMARY SEWAGE TREATMENT	SECONDARY TREATMENT
INVOLVES REMOVAL OF SOLID MATERIALS	INVOLVES THE ACTION OF MICROBES

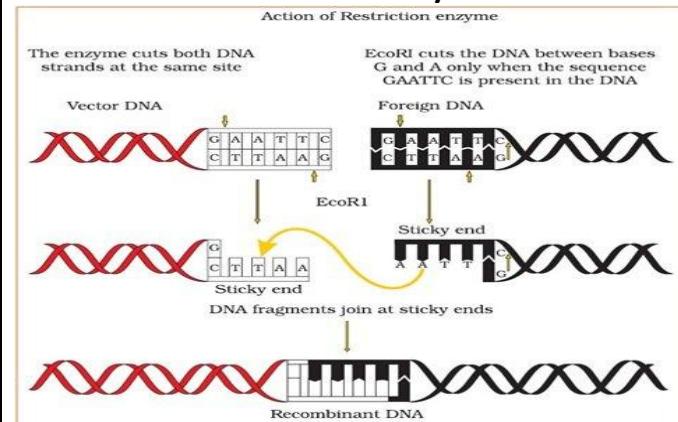
MICROBES AS BIO-CONTROL AGENTS

<i>Bacillus thuringiensis</i>	<i>Trichoderma sp.</i>	<i>Baculoviruses</i>
Control butterfly caterpillar		Esp. genus <i>Nucleopolyhedrovirus</i> – controls insect and arthropods

MICROBES AS BIO-FERTILISERS


CYANOBACTERIA	BACTERIA	FUNGI
SYMBIOSIS: ANABAENA IN AZOLLA	SYMBIOTIC BACTERIA – RHIZOBIUM	MYCORRHIZA
FREE LIVING: NOSTOC, OSCILLATORIA, BLUE-GREEN ALGAE	FREE LIVING BACTERIA – AZOSPIRILLUM, AZOTOBACTER	Association of Glomus with plants

UNIT – 9 : BIOTECHNOLOGY AND ITS APPLICATION


Chapter 11 Biotechnology: Principles and Process

Biotechnology deals with techniques of using live organisms or enzymes from organisms to produce products and processes useful to humans. Principles: (i) Genetic engineering (ii) Maintenance of sterile conditions during the process.	The techniques of genetic engineering include – <ul style="list-style-type: none">• Creation of recombinant DNA• Use of gene cloning• Gene transfer Cloning- is making multiple identical copies of any template DNA
Tools of Recombinant DNA Technology <ol style="list-style-type: none">1. Restriction enzymes2. Cloning vectors3. Competent host for transformation with Recombinant DNA Steps in genetically modifying an organism- <ul style="list-style-type: none">• Identification of DNA with desirable genes• Introduction of the identified DNA into the host• Maintenance of introduced DNA in the host• Transfer of the DNA to its progeny	Processes of Recombinant DNA technology <ul style="list-style-type: none">• Isolation of the genetic material (DNA)• Cutting of DNA at specific locations• Amplification of Gene of interest using PCR• Insertion of Recombinant DNA into the host cell/organisms• Obtaining the foreign Gene product• Downstream processing – separation and purification

Recombinant DNA Technology

Steps in formation of recombinant DNA by action of restriction endonuclease enzyme- EcoRI

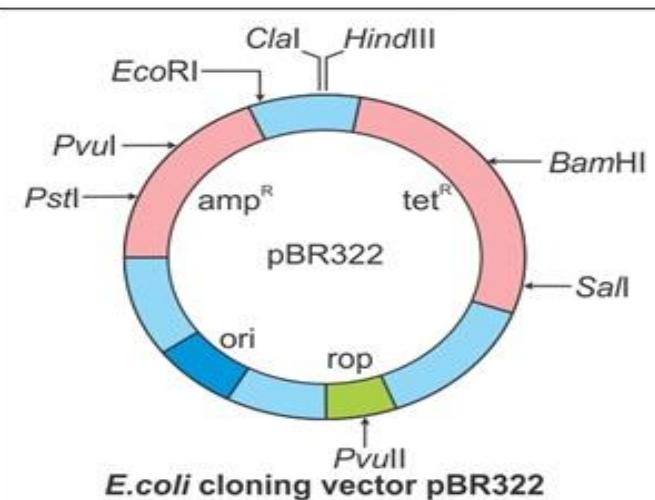
Separation and isolation of DNA fragments :

- Obtaining fragments of DNA after treatment with specific restriction endonuclease
- Separation of fragments by gel electrophoresis
- Staining the separated DNA fragments by ethidium bromide
- Visualising DNA fragments under uv light
- Cutting and extracting identified DNA fragments (elution)

Features of cloning vectors :

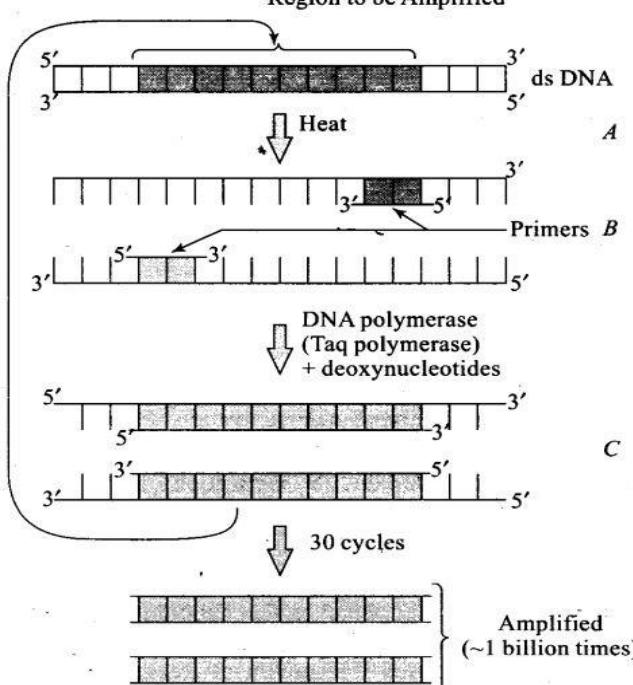
- Presence of origin of replication
- Provision of selectable markers
- Presence of cloning sites

Vectors for cloning genes in plants and animals –


- Ti plasmid of Agrobacterium tumefaciens for plants
- Retroviruses for animals

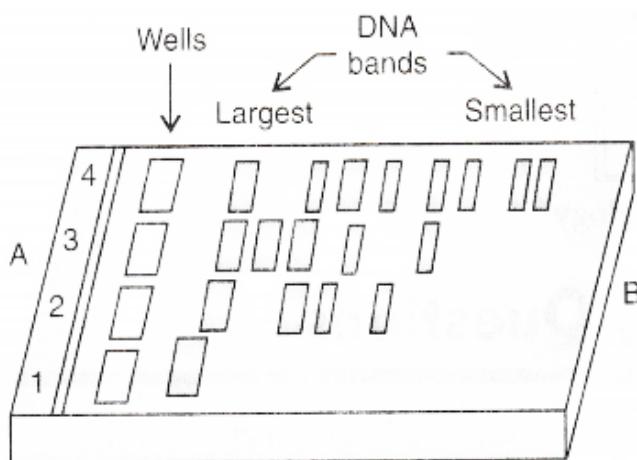
E. coli cloning vector pBR322

pBR322


- It was one of the first vectors to be developed in 1977.
- The 'p' indicates that it is **plasmid**, 'BR' indicates **Bolivar and Rodriguez**
- '322' distinguishes it from the other plasmids produced in the same laboratory e.g. pBR325, pBR327, pBR328.
- It is **4363bp** in size i.e. less than 10kb
- It carries **two sets of antibiotic resistance genes** i.e. either **ampicillin** or **tetracycline** can be used as a selectable marker.
- Each of the marker genes carries unique restriction sites and insertion of DNA into these sites inactivates the specific marker site. e.g. insertion of **new DNA** with **PstI**, **PvuI**, **PpaI** or **ScaI** **inactivates the amp^r gene**.
- It has a **high copy number**. They are about **15 molecules present in transformed cells** but it can be **increased to 1000 to 3000 by plasmid amplification** in the presence of protein synthesis inhibitor i.e. chloramphenicol.
- The vector comprises DNA derived from three different naturally occurring plasmids: the **amp^r gene** is from **R1 plasmid**, **tet^r** from **R6-5 plasmid** and the **ori** gene from **pMB1 plasmid**.

pBR322

Amplification of Gene of Interest : PCR


Region to be Amplified

Making the host competent for transformation with recombinant DNA

- Treating them with a specific concentration of a divalent cation, such as calcium, which increases the efficiency with which DNA enters the bacterium through pores in its cell wall.
- Recombinant DNA can then be forced into such cells by incubating the cells with recombinant DNA on ice, followed by placing them briefly at 42°C (heat shock), and then putting them back on ice which enables the bacteria to take up the recombinant DNA.
- Recombinant DNA can be directly injected into the nucleus of an animal cell by a method called **micro-injection**.
- In **biolistic or gene gun** method, cells are bombarded with high velocity micro-particles of gold or tungsten coated with DNA
- Disarmed pathogen vectors can be allowed to infect the cell to transfer the recombinant DNA into the host.

Agarose gel electrophoresis : for separation and isolation of DNA fragments

Bioreactors : to produce recombinant protein in large quantities

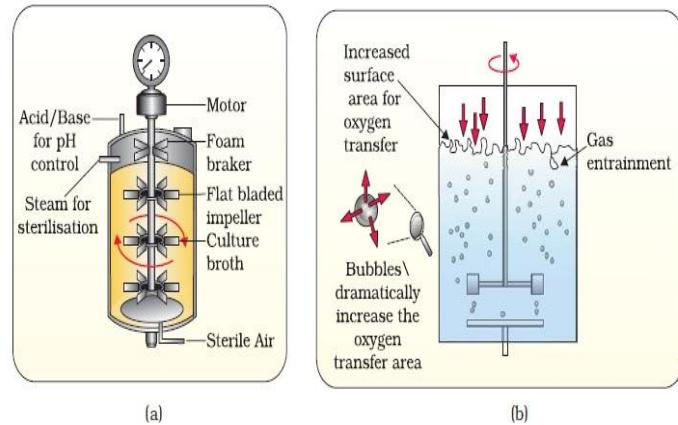


Figure 11.7 (a) Simple stirred-tank bioreactor; (b) Sparged stirred-tank bioreactor through which sterile air bubbles are sparged

Chapter-12 Biotechnology And Its Applications

Biotechnology application in agriculture-

1. Agro-chemical based agriculture,
2. Organic agriculture,
3. genetically engineered crop based agriculture

Transgenic crops(GMO)-Genetically modified organisms-Advantages-

More tolerant to stresses (heat, cold, draught), Pest resistant's GM crops, Reduced post harvest losses, Enhance nutritional value-vitamin A

Disadvantages-causes allergy & damage Ecosystem

Problem-A nematode Meloidogyne incognita infects tobacco plant & reduces its yield **Solution**-RNA interference The specific genes from parasite Agrobacterium

↓
Plants (Tobacco)

↓
sense&Antisense RNA are reproduced
↓

Both are complimentary so forms DS-RNA
↓ RNA interference

Neutralizes the specific RNA of nematode & There result was that the parasite could not survive in the transgenic host

Natural Insulin- Insulin contain

A & B Chain and overtrace C polypeptide chain(Termed

↓
as pro enzyme or Prohormone)

↓
C polypeptide removed

↓
Mature Insulin

Insulin extracted from pancreas of slaughtered cattle and pigs (Animal sources) causes **allergy**

Gene Therapy-

The first clinical gene therapy was given in 1990 (adenosine deaminase (ADA) deficiency.)

↓

A functional ADA cDNA (using a retroviral vector) is then introduced into these lymphocytes

↓

Bio-pesticide. Examples are Bt cotton, Bt corn, rice, tomato, potato and soyabean etc.

proteins that kill certain insects such as lepidopterans (tobacco budworm, armyworm), coleopterans (beetles) and dipterans (flies, mosquitoes) proteins encoded by the genes *cryIAc* and *cryIAb* control the cotton bollworms, that of *cryIAb* controls corn borer.

Bt- cotton -- BT stands for *Bacillus thuringiensis*

↓
produce scryystal proteins called cry proteins by cry gene of bacteria
↓
endotoxicito larvae of insects like to baccobudworm ,beetles & mosquitoes.
↓
cryproteinsexistsinactiveprotoxin& gets converted into active toxin in when ingested lay the insect, as the alkaline Hofgut & Causes pore

Recombinant Insulin- Eli Lilly an American company

prepared two DNA sequences corresponding to A and B, chains of human insulin

↓

introduced them in plasmids of *E. coli* to produce insulin chains.

↓

Chains A and B were produced separately

↓

Forming disulfide bonds between A & B to form human insulin.

Molecular diagnosis-Polymerase Chain Reaction

(PCR) and Enzyme Linked Immuno-sorbent Assay (ELISA) are some of the techniques that serve the purpose of early diagnosis. **ELISA is based on the principle of antigen- antibody interaction.**

Use of Transgenic animals-(i)Alpha-1-antitrypsin – a protein that is used to treat emphysema. ii) Alpha – lactalbumin –

Which are subsequently returned to the patient. It called bone marrow transplantation and alternate method is enzyme replacement therapy . **Problem**-both are not permanent cure. **Solution**- If ADA is introduced into cells at early embryonic stages, it could be a permanent cure. **Biopatent: A biopatent is** a right granted by a government to an inventor to prevent others from commercial use of his invention eg. **Basmati rice (US Patent)**

protein – rich milk that is more nutritionally balanced product for human babies? **GEAC** (Genetic Engineering Approval Committee), which will make decisions regarding the validity of GM research and the safety of introducing GM-organisms for public services. **Biopiracy**-use of bio-resources without proper authorization from the countries and concerned people **Biopatent-**

Unit X Ecology & Environment

Chapter – 13: ORGANISM AND POPULATION

4 Levels of biological organisation-Organisms, population, community and biomes. The key elements responsible for change in habitat (Temperature, water, light and soil). Niche is the functional role of organisms in ecosystem.

Major abiotic factors-

1. Temperature - (a. Stenothermal b. Eurythermals)
2. Water - (Stenohaline and Euryhaline)
3. Light - Photoperiod – a. Long day b. Short day and c. Day neutral plant
4. Soil-Soil micro climate, air, water and light also decide the type of vegetation and animal population.

Responses to abiotic factors

Homeostasis (The process to maintain internal environment constancy)

Regulators – eg. Human, Conformers – eg- Fish, Birds

During stressful conditions organism shows these strategies-

1. Migrate - Birds migrate from one place to another
2. Suspend – It includes dormancy, diapause, hibernation and aestivation.

Fungi and lower class plants make thick walled spores while angiosperms forms seeds.

ADAPTATIONS- Animal and plants shows 3 types of adaptations

- a. Morphological b. Physiological and c. Behavioural

Some examples Kangaroo rat and Camel, Cactus plant, Mammals in colder climate have shorter ear and limb (Allen's rule) Presence of blubber in whale etc.

Human overcome altitude sickness by increasing RBC, decreasing oxygen binding capacity of haemoglobin.

Basking in sun by Desert lizard.

POPULATION ATTRIBUTES

Birth rate, Death rate, Age group, Density are included in this. 3 types of population on the basis of age group

1. Expanding 2. Stable 3. Decline

Density- Need not to be measured always in number some time in form of relative density and some time on the basis of their biomass.

POPULATION GROWTH

Population growth can be explained by two curves.

1. Exponential growth -

$dN/dt = (b - d) \times N$ Let $(b-d) = r$, then $dN/dt = rN$. The r in this equation is called the 'intrinsic rate of natural increase'.

Exponential growth equation as $N_t = N_0 e^{rt}$, where N_t = Population density after time t , N_0 = Population density at time zero, r = intrinsic rate of natural increase, e = the base of natural logarithms (2.71828).

The exponential curve is J shaped curve. The S Shape curve is logistic growth curve.

2. LOGISTIC CURVE – and is described by the following equation: $dN / dt = r N (K-N/K)$ Where N = Population density at time (t) , r = Intrinsic rate of natural increase, K = Carrying capacity. Also known as Verhulst-Pearl Logistic Growth.

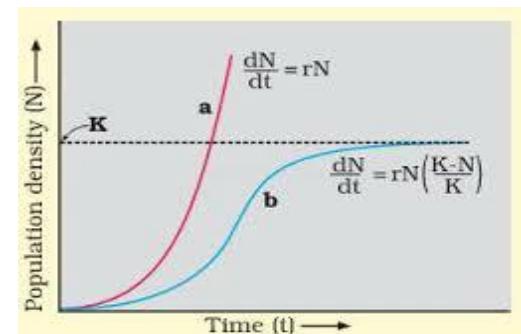
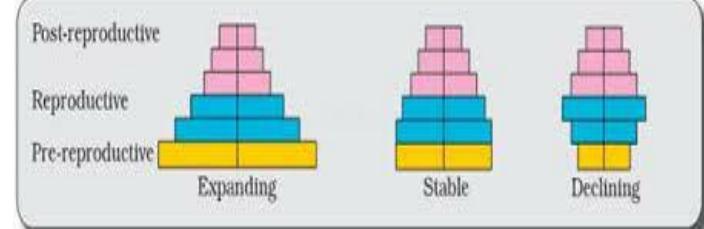
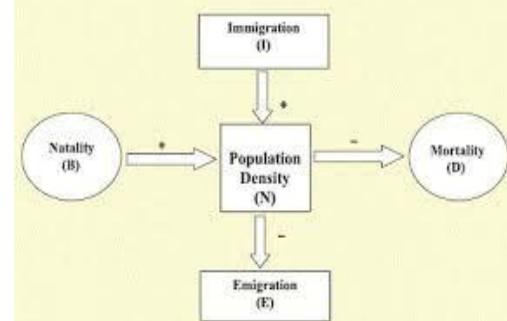
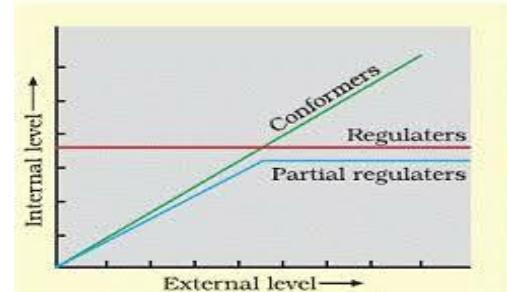





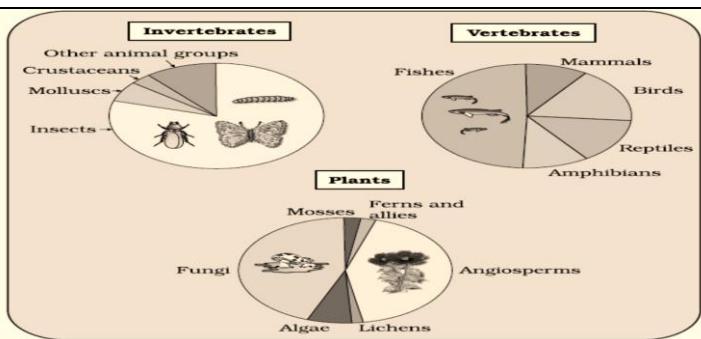
Table 13.1 : Population Interactions

Species A	Species B	Name of Interaction
+	+	Mutualism
-	-	Competition
+	-	Predation
+	-	Parasitism
+	0	Commensalism
-	0	Amensalism

Population interaction - Some important facts –

Biological control Methods, competitive release'. Gause's 'Competitive Exclusion Principle, Brood parasitism, mutualism and co-evolution and pseudo copulation etc.

Some examples related with interactions-


1. Predation- Prickly pear cactus and Moth, Starfish Piaster, camouflaged, Phytophagous, Monarch butterfly.
2. Competition-Flamingos with Fish, Tortoise and goats, Barnacles (balanus),
3. Parasitism: Liver fluke, Malaria parasite, Lice and Ticks, Cuscuta, Cuckoo and crow
4. Commensalism: Epiphyte, Cattle egret and grazing cattle, Sea anemone and Clown fish
5. Mutualism: Lichens, Mycorrhizae, Fig tree with Wasp, Orchid with bees and bumblebees.

CHAPTER -15 BIODIVERSITY AND ITS CONSERVATION

Biodiversity can be defined as the totality of genes, species, and ecosystems of a given region. Termed by EDWARD WILSON

Levels of biodiversity

- Genetic diversity- diversity of genes
- Species diversity- diversity of species
- Ecological Diversity- variation of habitats ,community types

Global Diversity-

- * More than 70 % of all the species recorded are animals out of which 70 % are insects.
- * plants account for about 22 %.

The conventional taxonomic methods **are not suitable**

prokaryotes because These species cannot be cultured under laboratory conditions.

Biochemical and molecular biology techniques would put their diversity into millions

Loss of biodiversity :-

The IUCN Red List (2004) documents the extinction of 784 species in the last 500 years that include 359 vertebrates and 87 plants.

Extinct animal- Steller's Sea Cow (Russia), Dodo (Mauritius), Quaga (Africa), Thylacine (Australia)

CHARACTERISTIC FEATURE OF A STABLE COMMUNITY :-

- i) A stable community should not show too much variation in productivity from year to year.
- ii) It must be resistant to occasional disturbances (natural or man made) and
- iii) It must also be resistant to invasions by alien species.

David Tilman's Experiment :-

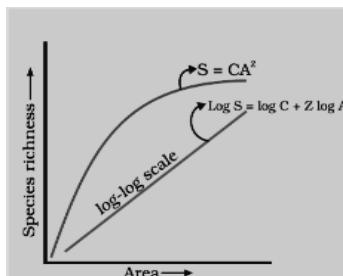
- a) Tilman found that plots with more species showed less year to year variation in total biomass.
- b) He also found that increased diversity contributed to higher productivity.

GLOBAL BIODIVERSITY

According to IUCN (2004), the total number of plant and animal species described is about 1.5 million.

Robert May (made more conservative & scientifically sound estimate) puts global species diversity at about seven million. These estimates do not give any figure for prokaryotes.

PATTERNS OF BIODIVERSITY


- 1). **LATITUDINAL GRADIENTS**- Species diversity decreases as we move away from the equator towards poles. The tropics (23.5° N to 23.5° S)

The Amazon Rain Forest in South America has the greatest biodiversity on earth

More diversity in Tropical- undisturbed environment, less seasonal , relatively more constant, and predictable.

2) SPECIES - AREA REALATIONSHIP

Alexander Von Humboldt has observed that with in a region , species richness increased with the increasing explored area, but only up to a limit.

$$\log S = \log C + Z \log A$$

where

S= Species richness A= Area

Z = slope of the line (regression coefficient)

C = Y-intercept

Causes for loss of biodiversity :-

Four major causes (The Evil Quartet)

1. Habitat loss & fragmentation.
2. Over exploitation.
3. Co-extinctions.
4. Alien species invasion.

Why should we conserve Biodiversity ?

1. Narrowly Utilitarian reason- economic benefits like food , fibre firewood, industrial products(resins,gums,dyes,tanins etc)
2. Broadly Utilitarian reasons :-Role in ecosystem, purifying of air
3. Ethical Reasons :- Every species has an intrinsic value to conserve.

Biodiversity conservation

In-situ conservation (On site)

National Parks, Biosphere Reserves, Wild life Sanctuaries Sacred forests & Lakes

Ex-situ conservation (Of site)

Botanical Gardens Zoos, Arboreta Seed/Pollen banks Gene Bank

Keyword & Comparison

UNIT – 6 Reproductions

Chapter 2

Comparison

1. unisexual and bisexual flowers
2. pollination and fertilisation
3. syngamy and triple fusion
4. microsporogenesis and megasporogenesis
5. Endosperm and perisperm
6. Apomixis and polyembryony

Chapter 3

Keywords: Stem cells , Chorionic villi, Placenta , Foetal ejection reflex.

Comparison:

1. Spermatogenesis and oogenesis
2. Fertilisation and implantation

Chapter 4

Keyword: ART, IVF, ET, ZIFT, IUT, GIFT, ICSI, AI, IUI

Comparison:

1. Maternal mortality rate and infant mortality rate.
2. Vasectomy and tubectomy

UNIT – 7 : GENETICS AND EVOLUTION

Chapter 5

Keywords:

Multiple alleles (Pg.78), Pleiotropic (Pg.85) ,Punnett square (Pg.73), Polygenic inheritance (Pg.85), Male and Female heterogamety (Pg.86-87), Aneuploidy and Polyploidy (Pg.91), Alfred Sturtevant (Pg.82)

Comparisons:

Monohybrid and Dihybrid cross, Homozygous and Heterozygous, Phenotype and Genotype, Test cross and Back cross (Pg. 72), Incomplete dominance and Co-dominance (Pg.76-77), Linkage and Recombination, Chromosome and Gene. (Pg.82-83)

Chapter 6

Keywords:

Erwin Chargaff, Wilkins and Franklin (Pg.97), Central dogma (Pg.98), NHC (Pg.98), Semi-conservative (Pg.104), Density gradient centrifugation (Pg.105), Replication fork, Ori (Pg.106), Exon , Intron, Cistron, Split gene(Pg.109), UTR, RF (Pg.115), Operon (Pg.116), EST and SA (Pg.119), SNPs (Pg.120), Polymorphism, VNTR, Probe and Southern blot (Pg.122), Ribozyme(Pg.115)

Comparisons:

Euchromatin and Heterochromatin (Pg. 98), DNAs and DNase(Pg101), DNA and RNA (Pg.103), Continuous and Discontinuous replication (Pg.106), Coding and Non- Coding strand (Pg.108), Monocistronic and Polycistronic (Pg. 109), Prokaryotic and Eukaryotic Transcription (Pg. 110-111), Frame shift and Point Mutation(Pg.113-114), Repetitive DNA and Satellite DNA (Pg.120).

UNIT – 8 : BIOLOGY AND HUMAN WELFARE

Chapter 8

Points to remember

Carcinogens: Cancer causing agents. e.g., gamma rays. UV rays, dyes and lead.

Immunity: Resistance to infection or antigen.

Immuno Suppressant: The chemical which suppress the immunity response to antigen partially or completely.

Interferon: The glycoproteins produced by our body cells in response to a viral infection.

Incubation Period: The time period between infection and the appearance of symptoms.

Metastasis: The property in which the cancer cells spread to different sites through blood and develop secondary tumors.

Oncogenes: Viral genome which causes cancer.

Retrovirus: A virus having RNA as genetic material and forms DNA by reverse transcription and then replicate e.g., Human Immunodeficiency Virus (HIV).

Sporozoites: The infective stage of protozoa *Plasmodium* which is injected into human blood through saliva of female *Anopheles* mosquito.

Syndrome: Collection of disease symptoms responsible for a disorder or a disease.

Vaccination: Inoculation of a vaccine to stimulate production of antibodies and provide immunity for one or more disease.

Abbreviations

PMNL: Polymorpho-Nuclear Leukocytes

CMI : Cell Mediated Immunity

ELISA : Enzyme Linked Immunosorbent Assay

HLA : Human Leukocyte Antigen,

MALT : Mucosal Associated Lymphoid Tissue

SCID : Severe Combined Immuno Deficiency

NACO : National AIDS Control Organisation

MRI : Magnetic Resonance Imaging

Comparisons

1. Communicable and non-communicable disease
2. Humoral & Cell mediated Immunity
3. Active & Passive Immunity
4. Opioid & Cannabinoid
5. Innate & acquired Immunity.
6. Benign & Malignant tumor

Chapter 10

Points to remember

Activated Sludge Process: Aerobic sewage treatment process using aerobic micro-organisms present in

sewage sludge to break down organic matter in sewage .

Biofertilisers : Microorganisms which produce fertilisers and enrich the soil e.g., Bacteria, cyanobacteria and fungi.

Bioactive Molecules : Molecules produced for commercial use from microbes and used for various purposes e.g., Trichoderma polysporum (fungus) is used to obtain immunosuppressive agent cyclosporin A.

Biochemical Oxygen Demand (BOD) : Total amount of oxygen consumed by bacteria for oxidation of organic matter present in one litre of water.

Baculovirus : Pathogens that attack insects and other arthropods. They are used to kill harmful pests and arthropods e.g., Nucleopolyhedrovirus.

Biocontrol Agents : Use of biological methods for controlling plant diseases and pests

Effluent : The product of primary treatment of sewage which is passed into large aeration tanks for secondary treatment.

Fermentation : The process by which microorganisms turn organic materials such as glucose into products like alcohol.

Fermentors : A very large vessel used in industry where microbes are grown on an industrial scale.

Flocs : During secondary treatment of effluent, excessive growth of aerobic bacteria and fungi form a mass of mesh like structure called flocs.

Immunosuppressive Agent : Chemical substances which suppress the immunity against organ transplant.

Lactic Acid Bacteria (LAB) : Bacteria growing in milk and convert it into curd e.g., Lactobacillus.

Abbreviations

DO:Dissolved Oxygen

GAP : Ganga Action Plan

KVIC : Khadi and Village Industries Commission

TMV:Tobacco Mosaic Virus

YAP : Yamuna Action Plan

IPM : Integrated Pest Management.

Comparisons

1. Swiss cheese & Roquefort cheese
2. Cyclosporin & Statin
3. Aeration tank & Activated sludge digestor
4. Conventional pestiside & Bio control agent
5. Chemical fertilizer & Bio fertiliz
6. Conventional farming & Organic farming

UNIT – 9 : BIOTECHNOLOGY AND ITS APPLICATION

Chapter 11

Keywords:

1. Recombinant Dna = Creating An Hybrid Dna With Desired Genes.
2. Gene Cloning = Creating A Copy Of The Genome
3. Ori = Origin Of Replication
4. Plasmid = Autonomously Replicating Circular Extra-Chromosomal Dna
5. Molecular Scissors = Restriction Enzymes Are Used To Tailor The Dna And Use It.
6. Gel Electrophoresis = Technique For Separation Of Dna Fragments
7. Ethidium Bromide = Used To Stain Dna
8. Transformation = Procedure By Which A Piece Of Dna Is Introduced Into The Host.
9. Insertional Inactivation = Pg. 200
10. Downstream Processing = Pg. 204
11. Rna Interference = Pg. 208
12. Biopiracy = Pg. 214

Abbreviations:

1. Efb = The European Federation Of Biotechnology
2. Pbr322 = Plasmid Bolivar And Rodriguez
3. Ti = Tumor Inducing
4. Pcr = Polymerase Chain Reaction
5. Bt = Bacillus Thuringiensis
6. Gmo = Genetically Modified Organisms
7. Ada = Adenosine Deaminase
8. Elisa = Enzyme Linked Immunosorbent Assay
9. Pku = Phenylketonuria
10. Geac = Genetic Engineering Approval Committee

Points To Remember

1. Construction Of First Rna – Stanley Cohen And Herbert Boyer (1972)
2. Isolation Of Enzymes Restricting The Growth Of Bacteriophage In E. Coli – 1963
3. Pbr322 = Created In 1977
4. Rnai = Post Transcriptional Gene Silencing (Ptgs)
5. 1983 = Preparation Of Synthetic Insulin By A Company Called Eli Lilly
6. In 1997, The First Transgenic Cow, Rosie Produced Human Protein Enriched Milk

UNIT - 10 Ecology& Environment

Chapter 13

Key words and comparisons:

1. Eurythermal and stenothermal
2. Euryhaline and stenohaline
3. Homeostasis
4. Thermoregulation and Osmoregulation
5. Regulators and conformers
6. Migration and Suspension
7. Hibernation and aestivation
8. Diapause (zooplankton)
9. Altitude sickness
10. Adaptations- Morphological, physiological, Behavioral
11. Birth rates and death rates/ per capita births and per capita deaths
12. Sex ratio
13. Natality and mortality
14. Immigration and Emigration
15. Exponential and logistic growths
16. Commensalism and Amensalism
17. Predation and Parasitism
18. Competition and Mutualism

Chapter-15

Keywords and comparisons:

1. Biodiversity- Genetic, Species, Ecological
2. Patterns of Biodiversity: Latitudinal gradients, Species Area relationship
3. Z value
4. IUCN
5. Alien species
6. Rivet pooper hypothesis
7. Key species/ key stone species
8. Loss of biodiversity- Fragmentation, over exploitation, Alien species invasions, co-existence
9. In situ and ex situ conservation
10. Biodiversity hot spots
11. Endemism
12. Sacred groves

Question-Bank

Chapter 2 Sexual Reproduction in Flowering Plants

1. Draw the embryo of grass and dicot plant and label it?	P35
2. Name the layers present in a typical angiosperm anther.	P22
3. What is double fertilization and triple fusion?	P32
4. Define microsporogenesis and megasporogenesis.	P22-25
5. Draw and explain 7-cell 8-nucleate stage of embryo sac.	P26

Chapter 3 Human Reproduction

1. Give the reason why not all copulations leads to fertilisation and pregnancy?	Pg. 51
2. Why, scientifically it is correct to say that the sex of the baby is determined by the father and not by the mother?	Pg.52
3. Write The role of male accessory glands in human reproductive system.	Pg.44
4. Write the name of hormones which present only during Pregnancy in human female, which among these is checked for confirmation of pregnancy.	Pg. 53
5. How many wall layers are present in female uterus, write their role in pregnancy?	Pg.46
6. Schematically represent the pathway of sperm from testis to ejaculatory duct.	Pg.43

Chapter 4 Reproductive Health

1.Why a ban has been imposed on amniocentesis?	P58
2.Differentiate between GIFT and ZIFT.	P64
3.Explain the natural methods of preventing pregnancy.	P60
4.Write any four characteristics of ideal contraceptives.	P59
5.What is MTP? When it will be legalised?	P62

CH . 5 PRINCIPLES OF INHERITANCE AND VARIATION

1. A. During a medical investigation, an infant was found to possess an extra chromosome	21. Describe the symptoms the child is likely to develop later in the life.	Page no. 90
B. A colorblind child is born to a normal couple. Workout the cross to show how it is possible and mention the sex of the affected child.		Page no. 90
2. A. How does a chromosomal disorder differ from a mendelian disorder?		Page no. 88
B. Name any two chromosomal aberration-associated disorders.		Page no. 89
C. List the characteristics of the disorders mentioned above that help in their diagnosis.		Page no. 89
3. State and explain the “Law of Independent Assortment” in a typical Mendelian dihybrid cross.	Pg no. 78	
4. I) In snapdragon, a cross between true-breeding red flowered (RR) plants and true-breeding white flowered (rr) plants showed a progeny of plants with all pink flowers. A) the appearance of pink flowers is not known as blending. Why? B) What is this phenomenon known as?		Page no.76
II) Write the scientific name of fruit fly. Why did Morgan prefer to work with fruit flies for his experiments? State any three reasons.		Page no. 83
5. A) What is a test-cross? How can it decipher the heterozygosity of a plant?		Page no. 75
B) Although Mendel published his work on inheritance of characters in 1865 but it remained unrecognized till 1900. Give three reasons for the delay in accepting his work.		Page no. 70

Chapter 6 Molecular Basis of Inheritance

1. (a) Explain the process of splicing of hnRNA in a eukaryotic cell.	111
(b) How do mRNA, tRNA and ribosomes help in the process of translation?	114
2. (a) Give a labelled schematic representation of lac operon in it's switched off position.	117
(b) DNA polymorphism is the basis of the DNA finger printing technique. Explain.	121
3. (a) State the conditions when genetic code is said to be: degenerate, unambiguous and specific, universal	112
(b) What is mutation? Explain with the help of an example how does a point mutation affect the genetic code. Name another type of mutation	113
4. (a) How did Hershey and Chase's established that DNA is transferred from virus to bacteria?	102
(b) How did Meselson and Stahl prove that DNA replication is a semiconservative process?	105
5. (a) Draw a labelled diagram of replication fork showing the polarity. Why does DNA replication occur within such forks?	107
(b) Write the conclusion drawn by Griffith at the end of his experiment with the bacterium	100

Chapter 8 Human Health and Disease

1. Name any two method physiological barriers that provide innate immunity?	P150
2. Draw the structure of an antibody molecule?	P151
3. How can we identify drug abused and write any preventive measure of drug/alcohol abuse?	P158
4. What is HIV factory?	P155
5. Write the life cycle of plasmodium in human and mosquito.	P148

Chapter 10 MICROBES IN HUMAN WELFARE

1. A) Bottled fruit juices are clearer as compared to those made at home. Explain. (Pg 183)
B) Name the two groups of organisms which constitute 'flocs'. Write their influences on the level of BOD during biological treatment of sewage. (Pg 184)
- C) Why do we add an inoculum of curd to milk for curdling it? (Pg 181)
2. A) Name the function of Cyclosporin-A. How does this bioactive molecule function in our body? (Pg 183)
B) Name the source of statin and state its action on the human body. (Pg 183)
C) Write the scientific name of the microbe used for fermenting malted cereals and fruit juices. (Pg 182)
3. A) Explain the different steps involved during primary treatment phase of sewage. (Pg 184)
B) Make a list of three household products along with the names of the microorganisms producing them.
4. A) Describe how biogas is obtained from the activated sludge? (Pg 184)
B) State the medicinal value and the bioactive molecules produced by Streptococcus, Monascus and Trichoderma (Pg 182)
5. Given below is a list of 6 microorganisms. State their usefulness to humans.

a. <i>Nucleopolyhedrovirus</i> (Pg 187)	d. <i>Saccharomyces cerevisiae</i> (Pg 182)
b. <i>Monascus purpureus</i> (Pg 183)	e. <i>Trichoderma polysporum</i> (Pg 183)
c. <i>Penicillium notatum</i> (Pg 182)	f. <i>Propionibacterium shermanii</i> (Pg 181)

Chapter 11 Biotechnology: Principles and processes

1. a. How are recombinant vectors created? Why is only one type of restriction endonuclease required for creating one recombinant vector? 197
b. Explain with the help of a suitable example the naming of a restriction enzyme. 195
2. a) State the functions of the following in the cloning vector pBR322 : 199
(i) ori (ii) rop (iii) Hind III
b) How are the following used in biotechnology? 194-95
Plasmid DNA (ii) Recognition sequence (iii) gel electrophoresis 198
3. a) Write the palindromic nucleotide sequence for the following DNA segment 196
5'----GAATTC----3'. Name the restriction endonuclease that recognises this sequence.
- (b) Name the source of DNA polymerase used in PCR technique. Mention why is it used? 203
4. (a) What is a bioreactor? How does it work? 204
(b) Draw a labelled diagram of sparged stirred tank bioreactor.
5. (a) Explain in sequence the process of amplification of a gene of interest using polymerase chain reaction. 202
(b) What do you mean by (i) Recombinant DNA (ii) Cloning (iii) Palindrome in DNA. 194,196

Chapter-12 Biotechnology And Its Applications

- 1.What was the specialty of the milk produced by the transgenic cow Rosie? P213
- 2.Expand ELISA. Why it is used as a disease diagnostic tool?. P212
- 3.Explain the steps involved in the production of genetically engineered insulin. P211
- 4.(a) Name the nematode that infests and damages tobacco roots.
(b) How are transgenic tobacco plants produced to solve this problem? P209
5. (a) Mention the cause and the body system affected by ADA deficiency in humans.
(b) Name the vector used for transferring ADA-DNA into the recipient cells in humans.
Name the recipient cells. P211

CH 13 ORGANISM AND POPULATION

1. Plant shows some astonishing properties of defence against herbivore. Pg. -234
2. Species promote co-existence rather than exclusion. Give justification with example. Pg-121
3. Why plant-animal interactions often involve co-evolution of the mutualists. Pg 237
4. Small animals rarely found in Polar Regions? Give reason Pg.224
5. If there are 200 carrot grass (*Parthenium hysterophorus*) plants but only a single huge banyan tree with a large canopy, stating that the population density of banyan is low relative to that of carrot grass amounts. In such case how will you calculate density? Pg. 228

Chapter-15 Biodiversity and its conservation

- 1.Alien species are highly invasive and are a threat to indigenous species.
Substantiate this statement with any three examples taking one example each of. P265
- 2.What is the difference between in-situ & ex-situ conservation? P267
3. "Amazonian rain forest in south America has the greatest bio-diversity on earth". Justify the statement. P261
- 4.What are sacred grooves? What is their role in conservation? P267
- 5.What is evil quartet ? Explain in detail. P264